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Abstract 
We describe the recent progress of organic TFTs from the 

viewpoint of large-area sensors and actuators such as artificial 
electronic skins, sheet scanners, and sheet Braille displays. We 
report ultra-flexible pentacene TFTs that are functional at a 
bending radius of 0.5 mm. These transistors are manufactured on 
a 13-µm-thick polyimide film and encapsulated by a 13-mm-thick 
parylene layer in order to embed them in a neutral position. The 
TFTs exhibit no significant change after 60,000 bending cycles. 
Then, we describe the control of the threshold voltage of the 
pentacene TFTs with novel double gate structures in which the top 
and bottom gate electrodes can apply bias voltages to channel 
layers independently. Finally, we report organic TFTs that exhibit 
a very small degradation in performance under a continuous DC 
bias stress. When the pentacene TFTs are annealed at 140 ºC for a 
duration of 12 h in a nitrogen environment, the change in IDS is 
1% even after the application of continuous DC voltage biases of 
VDS = VGS = -40 V for 45 h. 

 
 

Introduction  
In the past several years, intensive research and development 

have been made in order to realize flexible electronics. In particular, 
organic thin film transistors (TFTs) and their integrated circuits 
have attracted considerable attention (1–4) since organic TFTs 
possess attributes that complement high-performance silicon-based 
LSI devices, which are expensive. Organic TFTs can be 
manufactured on plastic films at ambient temperatures; therefore, 
they are mechanically flexible and potentially inexpensive to 
manufacture. Recent studies organic transistors are based on two 
major applications. The first application includes flexible displays, 
such as paper-like displays or e-paper, in which electronic inks or 
other media are driven by matrices of organic transistors. The other 
is radio frequency identification (RFID) tags. The printable features 
of organic transistors should facilitate the implementation of RFID 

tags on packages.   
As the third application, flexible, large-area pressure sensors and 

actuators are proposed and demonstrated: The active matrices of 
organic TFTs integrated circuits are used for data readout from 
area-type sensors or to drive large-area actuators. In this paper, we 
report the recent progress and future prospects of organic TFT 
active matrix technologies for flexible, large-area sensors and 
actuators. 

 

Robot skins 
The earliest application of large-area sensors is a flexible 

pressure sensor (5), which is suitable for electronic artificial skin 
(Fig. 1), which will be used in next-generation robots. Although the 
mobility of organic semiconductors is approximately two or three 
orders of magnitude less than that of poly- and single-crystalline 
silicon, the slower speed is tolerable for most applications of large-
area sensors. In particular, for the fabrication of E-skins, the 
integration of pressure sensors and organic peripheral electronics 
avoids the drawbacks of organic transistors, while taking advantage 
of their mechanical flexibility, large area, low cost, and relative ease 
of fabrication. 

A 16 × 16 active matrix of organic transistors, row decoder, and 
column selector are assembled by a physical cut-and-paste 
procedure to develop integrated circuits for data readout. Three 
functional films — an interconnection layer, a pressure-sensitive 
rubber sheet, and a top electrode for power supply— are then 
laminated together with the organic ICs. Pressure images were 
obtained by a flexible active matrix of organic transistors whose 
mobility is as high as 1.4 cm2/Vs. These sensors can be bent to a 
radius of 0.5 mm, which is sufficiently small for the fabrication of 
human-sized robot fingers.    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: A picture of an electronic artificial skin (E-skin) for a robot in the next 
generations. Organic transistors are used to read out pressure distributions.  
Since all the components except electrodes are made of soft materials and 
manufactured on a plastic film, it is lightweight, thin and mechanically 
flexible. 

 
 



 

 

Based on an organic semiconductor, we have developed 
conformable, flexible, wide-area networks of thermal and pressure 
sensors. A plastic film with organic transistor-based electronic 
circuits was processed to form a net-shaped structure that allows 
the E-skin films to be stretched by 25%. The net-shaped pressure 
sensor matrix was attached to the surface of an egg and pressure 
images were successfully obtained in this configuration. Moreover, 
a similar network of thermal sensors was developed using organic 
semiconductors. A possible implementation of both pressure and 
thermal sensors on various surfaces is presented. By using 
laminated sensor networks, the distributions of pressure and 
temperature are simultaneously obtained. 

 

Sheet-type Braille displays 
Organic transistors are also suitable for applications to large-area 

plastic actuators. We have fabricated a novel, flexible, lightweight 
Braille sheet display that is fabricated on a plastic film by 
integrating high-quality organic TFTs with plastic actuators (7). A 
small hemisphere that projects upwards from the rubber-like surface 
of the display is attached to the tip of each rectangular actuator 
(Fig. 2).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2: An image of a pocket Braille sheet display. It was 
manufactured on a plastic film by integrating the active matrix of 
organic TFTs with a plastic sheet actuator array based on a 
perfluorinated polymer electrolyte membrane. The device is 
mechanically flexible, very thin, and lightweight. One character is 
displayed by a 3 × 2 array of rectangular actuators (4 mm in length and 
1 mm in width). A semisphere is attached to each actuator, which 
bends and lifts the semisphere. Principle of Braille motion is also 
shown. 

 
Mechanical flexibility 

We describe the recent progress of organic transistors from the 
viewpoint of large-area electronics (8). First, we report ultra-
flexible pentacene TFTs that are functional at a bending radius of 
less than 1 mm. These transistors are manufactured on a 13-µm-

thick polyimide film and encapsulated by a 13-µm-thick parylene 
layer in order to embed them in a neutral position. The TFTs exhibit 
no significant change after 60,000 bending cycles. 

 

DC bias stress 
We report organic TFTs that exhibit a very small degradation in 

performance under a continuous DC bias stress (9). When the 
pentacene TFTs are annealed at 140 oC for a duration of 12 h in a 
nitrogen environment, the change in IDS is 1% even after the 
application of continuous DC voltage biases of VDS = VGS = –40 V 
for 45 h. 

 

Future prospect 
Organic transistor-based integrated circuits play an important role in 

large-area electronics wherein the manufacturing cost per area must be 
very low. Undoubtedly, one of the most important directions for future 
electronics is ambient intelligence or wireless sensor networks. In order 
to realize such networks, one of the key technologies is a sensor to 
detect physical or chemical information distributed over a large area. 
We believe that the large-area features of the organic transistors would 
be instrumental in realizing such large-area sensors. A new class of 
applications that require large-area detections has gained importance in 
future electronics. It is important for the organic transistors to compete 
with silicon in terms of the cost per function. However, they are 
suitable for applications that require low-cost features in a large area. 
Therefore, organic transistors are appropriate for large-area electronics. 
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